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1. Introduction

This annual technical report covers the first year period of NASA grant NAG 1-1065
commencing October 23, 1989 and ending October 22, 1990. The research results were par-
tially described in the semiannual report dated April 26, 1990 and also in the renewal propo-
sal dated July 20, 1990. However, this report is inclusive of the results obtained during the
one year period and, in addition, has appended four papers giving details of the algorithms
and developments forming the background for the current work.

2. List of Scientific Collaborators

A. V. Fullerton* ~ Graduate Student Research Assistant
J. Q. Pan Graduate Student Research Assistant
A. E. Pearson* Professor and Principal Investigator

* Received partial support under NAG-1-1065
3. Completed and Continuing Research

3.1. Modeling Considerations

Our proposed research into the pafamctcr identification for nonlinear aerodynamic sys-
tems presumes that the underlying model can be arranged into an input/output J/0)

differential operator equation of the generic form 1

?jgi (O)F;; w(t).y (1P (@ E;w(2)y 1)=0 0

where [u(¢),y (t)] denote input/output variables assumed to be available as measured data on
some time interval, O denotes a vector of parameters whose value is to be estimated based on
the given data, P;;(p) is a polynomial in the differential operator p=d/dt for each index pair
(i,j), i=1, - - ny, j=1, - - ny, and the [Ej;(u ¥ ).Fij(u.y)8; (0)] are given (sufficiently smooth)
functions of their arguments that depend on the specified model. Additional data-related
smoothness conditions pertain to the functions g;;(£)=F;;(u(t).y (t)) for inexact models in
which the F;;’s are not all constants.? In the case of exact differential operator models, the
F ij ’s are all constants, i.e., (1) reduces to the simpler form

32: ()P, (0 )E; (u 1),y (1))=0, @
iJ
and the algorithm for parameter estimation is especially efficient for this case since the equa-

tion error can be integrated exactly given any I/O pair to obtain an algebraic function of the
parameters. (As detailed in Section 3 of Appendix A.)

! Although scalar valued, vector versions of this equation may be developed to accommodate mul-
tivariable system models. Also, extensions to models which are nonseparable in some of the parame-
ters is potentially possible, e.g., differential delay equation models with unknown time delays.

2 Definitions and illustrations of the terms exact, inexact, separable, etc., are given in the attached
Appendix A paper together with an algorithm for the model (1).






2-

The augmented linearized equations for aircraft discussed in Section 4 of Klein 3 (aug-
mented by aerodynamic derivative coefficients modeled as parametrized functions of aero-
dynamic inputs and responses) appear to be representable by the model (2), albeit with a large
number of parameters. Part of our future work will be directed towards these models.
Although our simulation experience with nonlinear models is not extensive, we can assert
with some degree of confidence that the algorithm has good noise rejection properties in the
case of linear system models with additive noise on the data. As detailed in the attached
Appendix C paper, the noise rejection properties can be explained via the frequency domain
interpretation of the Fourier based modulating functions. Therein also can be found an exten-
sion of the algorithm, via the maximum likelihood technique, to stochastic linear models with
additive white gaussian noise. These results for linear systems show that the bias incurred by
deterministic least squares can be effectively removed in a high noise-to-signal situation.
However, with the exception of linear systems, i.e., systems describable by a linear
differential operator equation like

n ) n-1 .
Ya,;p'y@®)=X b,_1_ip'ut), ag=l (3)
i=0 i=0

it is recognized that the /O models (1) or (2) may appear vague and somewhat formidable
because the more familiar state vector equations like

x(O)=f & ()u(@).0) “

y(@)=h(x(t),u().6)

are almost always the starting point into methods for the parameter identification of deter-
ministic systems modeled by nonlinear ordinary differential equations. This is understandable
and, therefore, part of our effort has gone into the relationship between the models (1) and (4)
insofar as parameter identification is concerned. Although this effort is ongoing, one such
relationship we have investigated is that of the ‘‘identifiability”’ property of these models.
This notion has been the subject of a number of papers relative to the state equation model
(4), and we have shown in the attached Appendix B paper that single-valuedness of the g (6)
function appearing in (1) is a necessary property else the ensuing parameter estimation prob-
lem will be ill-posed. Thus, defining the vector function g (8)=(g 1(6).g 20), - - ,g,,l(e)) rela-

tive to the model (1), the following “‘injective’” property:
g (=g (8") if and only if 6=6" (5)

is a necessary condition else nonuniqueness will plague the parameter estimation problem.
This conclusion is based on an examination of the metric properties of the /O model (1)
when viewed as a function on the parameter space for 8. As pointed out in Appendix B, this
conclusion is consistent with the results of other investigators when applied to specific state
equation models that possess an equivalent I/O representation, but the latter model makes the
determination of this property more transparent than the test for nonidentifiability of state
equation models.

3 Klein, V., “‘Estimation of Aircraft Aerodynamic Parameters from Flight Data,”’ Prog. Aerospace
Sci., Vol. 26, pp. 1-77, 1989.






3.2. Structure Determination

We have extended the algorithm for parameter identification described in the Appendix C
paper to the order determination problem for linear differential systems, i.e., the model (3)
where the order n is unknown in addition to the parameters (a; * - @,,bg * * b,_;), by making
use of an important property of modulating functions, namely: any modulating function of
order N is also a modulating function of order n for any n<N. Thus, by using a set of
Fourier based modulating functions (as defined by Eq. (4) in Appendix C) of preselected

order N2>maxn, the algebraic equation counterpart to Eq. (10) of Appendix C is the equation:*

n ) n-1 .
Ya, ;,CD**Y=Y b, 1 ;,CD™*U, ay=1 6)
i=0 i=0

k=0,1--N-n

Defining the vectors W (m) and V (m) by
W(@m)=CD™Y, V(m)=CD™U
Eq. (6) can be rewritten as

n , n-1 .
(Xa;gW(m)=(Xb;g” " W(m-1), m=nn+l--N )
i=0 i=

where ¢! is the unit delay operator, i.e., g W (m)=W (m-1). Although arriving at (7) is
merely a redefinition of previously defined quantities, ie., calculating the sequence pair
(V(m),W(m)) is easy once the finite set of Fourier series coefficients of the input/output data
has been calculated, Equation (7) is now in a form that can utilize well known discrete system
algorithms if desired. However, here we employ this equivalent form because it facilitates
iterating on the order n.

Without going into further algebraic details (full coverage of which will be put in a
forthcoming paper), we use the parsimony principle in finding the simplest model, i.e., the
Jowest order, that adequately fits the data. The algorithm minimizes the least squares cri-
terion:

N
E, = Ye, (k)e, (k) 8
k=n

over the 2n parameters (a, * - d,.bg * - b,y iteratively for each n starting from n=1, where
e, is defined in terms of the equation error for (7). The decision rule for stopping the itera-

tion is:

A -_—.min{n | D, <8, 1sn<N } ©

where

4 The precomputable matrix pair (C,D) and the vector pair (U,Y) of finite Fourier series
coefficients of the I/O data are defined in Section 2 of Appendix C.
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_ E, - En+1
n El ‘
Thus, the iterations are stopped when the rate of unprovcment in the least squares criterion
falls below a user chosen threshold 9. ~

The above described algorithm has been applied to several examples, including the fol-
lowing fourth order Chebyshev filter system:

D

0.0438
5440.619253+0.61452+0.20385 +0.0492

With the threshold choice 8=0.1 in (9), the result of one simulation for the system (10) is
summarized by the graphs in Fig. 1. Shown here is the input/output data on a 40 sec time
interval, a plot of D, verses n, and frequency response plots comparing the magnitudes of the
transfer functions for the original and estimated system. The T=40sec time interval is approx-
imately double the settling time for the system (10); this results in a resolution frequency of
©y=27/T =0.157 rad/sec which is adequate to resolve the modes in the frequency response for
(10) as seen by the magnitude plot in Fig. 1. The output data included about 10% RMS addi-
tive white noise which accounts for the deviations in the frequency response plots. These and
additional examples confirm that the algorithm has the potential to correctly determine the
system order under moderate noise-to-signal ratios. Further research is planned to extend the
above structure determination algorithm to polynomial I/O differential operator models.

G(s)=

(10)
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3.3. Data Collinearity )
Another problem we have addressed during the past year is the degeneracy in a least

squares estimate caused by feedback. The problem for aircraft has been described in Klein >
and is most obvious in the case of linear system identification since linear feedback will
directly cause collinearity between the input/output regressors in the absence of external inputs
during the observation interval. Using the algorithm of the Appendix C paper and the setup
of Fig. 2, we have been studying the tradeoff between estimation accuracy in the parameters
verses the degree of collinearity between the 1/O regressor vectors and the RMS noise level of
the contaminating noises (v,w). The degree of collinearity is controlled by inserting the
external signal d(z), i.c., perfect collinearity results (hence complete degeneracy) under the
condition: d (¢)=0.

+ +
v(t)= @-» IDENTIFIER [e= (%) émmr(t)
+

OPEN LOOP
u(t) SYSTEM y(t)

4+ -
d(t) -‘@ + |FEEDBACK GAIN

Fig. 2 : Closed Loop System Identification

An example simulation result is shown in Fig. 3 for the system with the forward (open)
loop transfer function:

20
s2455-5
The top of Fig. 3 shows the input/output data for one particular external signal which resulted
in the normalized correlation coefficient Nyu=—9963, where Nyu is defined by:

G(s)= an

and (U,Y) are the vectors of finite Fourier series coefficients of the /O data defined in

5 Klein, V., *‘On Parameter Estimation of Highly Augmented Aircraft,”” AIAA Paper No. 89-
3356. Presented at the 1989 Atmospheric Flight Mechanics Conf., Boston, MA, August 1989.
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Section 2 of the Appendix C paper. The lower portion of Fig. 3 is the result of numerous
simulations under different d () signals to achieve various values of Nyu while increasing the
levels of the contaminating noises until a threshold 5% accuracy level is attained in the
parameter estimates using the least squares algorithm of Appendix C. This graph shows that
starting from complete degeneracy, i.e., Nyu=-1.0, zero noise level can be tolerated, but mod-
est nonzero noise levels can be present in increasing amounts as collinearity collapses while
still maintaining the accuracy level in the estimated parameters of approximately 5%.

- The above results give some idea of the tradeoff between degree of collinearity and noise
levels in the data for the least squares algorithm of the Appendix C paper, but the question
arises as to how this compares with other approaches. This is difficult to answer, especially
since there are not many algorithms available that are designed exclusively for differential
systems. However, one easy comparison we have made is to apply the ARX parameter esti-

mation algorithm of the System Identification Toolbox (by L. Ljung) in MATLAB.® We have
been using MATLAB to carry out all simulations anyway, hence the ease in comparison.
ARX identifies a model in discrete time which we then convert to a differential equation
model using the MATLAB algorithm CONTIN designed for this purpose. One result of this
comparison is shown in Fig. 4 which depicts the output error between the actual output and
the predicted output (using the parameter values estimated by the two algorithms) versus
increasing levels of RMS noises in the data. These simulations were carried out under non-
collinearity conditions d(z)#0 for the system (11) and show the superiority of the algorithm of
Appendix C in relation to the ARX/CONTIN algorithm for this example. It must be admitted,
however, that ARX is designed for discrete-time models and, therefore, such a comparison is
somewhat biased.

The above study follows an earlier investigation into two approaches to alleviating the
degeneracies of collinearity; one approach utilizes projection operators designed to zero out
the collinear vectors known to cause the degeneracies thereby obtaining a least squares regres-
sion equation with fewer parameters and a better conditioned estimation problem. A second
approach involves subdividing the total observation time interval into subintervals during
which linear feedback is in effect, then redefining the modulating functions relative to one or
more of these intervals in order to formulate the least squares estimation problem specific to
the intervals causing the degeneracies. Neither of these approaches has shown any advantage
to the straightforward application of the Appendix C algorithm, an example of which has been
briefly discussed above for the system (11). An Sc.M. thesis is under preparation by A. Full-
erton detailing these investigations.

3.4. Frequency Analysis

A method of frequency analysis for determining the transfer function G (j ) from tran-
sient I/O data has been formulated in the Appendix D paper using complex valued Fourier
based modulating functions in contrast with the trigonometric modulating functions used in
the Appendix C paper for the parameter estimation problem. We started this investigation
with the expectation that the more explicit representation of the complex form (compare Eq.

6 PC-MATLAB by The MathWorks, Inc.
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(A.14) in Appendix C with Eq. (3) in Appendix D) might be valuable in answering questions
about optimal inputs for parameter identification, optimal modulating functions for noise
suppression, and the like. Although this work is ongoing, it became clear that the complex
form is ideally suited to the frequency analysis problem since it facilitates a linear-in-
parameters least squares formulation for frequency related parameters. Several variants of the
formulation are possible, but all utilize a finite set of the Fourier series coefficients calculated
from the /O data over time intervals [z;,;+Tl, i=1,2, - -, each of duration T;=2n/®,, where
©, is a user selected *‘resolving’’ frequency.

A simulation result of applying the algorithm detailed in Section 2.2 of the Appendix D
paper is given in Fig. 5 under noise-free conditions for the system with the low pass transfer
function:

1.752+1736.8
$3+19.1524257.485 +1736.8
The nine seconds of I/O data shown was subdivided into nine [0,T ] intervals, i.e., T¢=1, and
the algorithm produced essentially perfect estimation of the magnitude/phase plots for G (j w)
at the frequencies k2w, k=1,2 - - 6, as shown by the rectangles. Also shown (by the x marks)
are the magnitude/phase values that resulted from a direct computation of the ratio of the
Fourier-type integrals:

G(s) (12)

9
[y@)e %™ ar
0

5 , k=126 (13)

{u (2)e %™ gy

The reason for the errors in the above ‘‘direct ratio’’ is due to the finite time data, ie., the
finite limits of integration in (13).
A similar comparison is shown in Fig. 6 relative to the high pass transfer function:
53+22.02s
5s3422.245%4247.445 +1943.23

This comparison shows that the error in the direct ratio will generally be more pronounced
under nonzero initial conditions.

As the formulations in the Appendix D paper undergo further investigations, one
modification that has been made is the removal of the presumed knowledge of the DC value
G (0). These and additional simulations under noise corrupted data conditions will be the
focus of some our future work in this area.

G(s)= (14)
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LEAST SQUARES PARAMETER IDENTIFICATION
OF NONLINEAR DIFFERENTIAL /O MODELS ! !

A. E. Pearson

Division of Engineering
Brown University
- Providence, RI1 02912

ABSTRACT

A least squares parameter identification technique is formulated
for deterministic systems modeled by a class of input-output non-
linear differential operator equations. Based on the notion of
exaciness in the calculus, a distinction is made on the basis of
whether or not the ecquation error representation is an exacr
differential expression. It is shown how equation error models
which are exact can be integrated for any given input-output data
pair to yield an explicit function of the parameters that can be
used for standard least squares estimation techniques. The formu-
lation is then extended to apply to a class of inexact equation error
system models. Also discussed is the notion of ‘identifiability’ as
it relates to the class of systems under consideration.

1. Introduction

Consider a class of deterministic systems whose input-output
(I/O) relation can be described implicitly by a differential operator
equation of the form:

E )y ), pty @) put)- pmu()8) =0 )

where p denotes the differential operator didt so that p2=dz/dr2,
etc. It is assumed that E is a specified scalar valued nonlinear
function of the output y(f) and its first n time derivatives, the
input u (1) and its first m time derivatives, m<n, and a parameter
vector 8; the latter is to be estimated given the input-output data
{u(e).y (1)), but not derivatives of the data, on some time interval.
In the case of lincar systems, ie., E(,, ) linear in cach of its
arguments, equation error models have long been used in various
parameter identification techniques (see for example Mendel [1]).
A property often taken for granted with linear models is that they
can be integrated, given continuous-time input-output data, or
summed given sampled data for discrete-time system models, in
order to obtain an explicit function of the coefficient parameters.

Such models seem not to have been explored very much for non-
linear systems, the emphasis instead being on techniques that deal

with the normal form state vector cqu;uions:2

x(e)=f (x(1)u(1).0)
y(£)=c (x (1),u(1).0). 2

where (f ,c) are given functions, generally nonlinear in x and u,
parametrized by 8. Although these models apply to a broad class
of physical systems, it seems difficult to ease the computational
burden in parameter identification by exploiting any special struc-
ture like linearity in certain state variables or parameters. In addi-
tion, unknown initial conditions have to be appended to the
parameter vector for time limited data unless the data is collected
under special conditions.

! Rescarch supponied in pant by the National Science Foundation
under Grant ECS 8713771,

88CH2531-2/68:0000-183151.00 € 1988 IEEE

The purpose of this paper is to show how special structure
can play a role in easing the parameter identification problem for a
class of nonlinear sysiems subsumed by (1). 3 The main assump-
tions are: (i) that the data is frec of measurement noise, and (ii)
for an arbitrary input-output data pair [u(t).y (?)], observed over a
time interval 0<<T, there exists a parameter vector 8* such that
the model (1) is satisfied on {0,7] with 6=6*. Thus, modeling
errors are presumed small enough that deterministic least squares
will be meaningful. In addition, standard causality and continuity
conditions are tacitly assumed so that a unique bounded solution
y(r) exists satisfying (1) on any finite time interval [0,T] given
the system parameter vector 6 and a bounded input u(r) over the
interval [0,T], together with the appropriate initial conditions.
However, being able 10 solve uniquely for y(t) given (8,u(r)],
0<t1<T, and the initial conditions does not necessarily imply being
able to integrate the parametrized equation error (1) relative to a
data pair [u(t),y ()] on (0,T] with the aim of obtaining a function
of 6 useful for parameter identification purposes.

As examples to illustrate the affect of structure, consider first
the forced Van der Pol equation:

¥ ()-8, [1 -yt )]5- (1)+8y (N)=u (1). ©)
Noting that py3=3y?py, (3) is equivalent 10 the differential

operator equation:
1
(p2-8,p +8,)y (11— 010y *(1)-u (1)=0 “)

and therefore it is the second total differential of a function z(r,6)
defined implicitly by the solution to the following equation:

p22(1,8)=(p2-8,p +8,)y (t»%elpy 3ey-ur). €))

With due consideration paid to unknown initial conditions, the
solution z(r,8) provides the basis for an explicit equation error
function of © given that [u(r),y ")y3(1)) are regarded as forcing
functions on some time interval [0,7). It is noted that (4) can also
be expressed in the following vector-marrix form:

p2 01 | }'(f)
(18,8)|0 p O 3y’(:)—y(:) =0. 6
1 00
-u(t)

Contrasting with the structure of the preceding example, the
following differential operator equation does not share a similar

property:
p’y ()40, [p)' (r )]l-ezu (1)=0. )]

2 For example, the method of quasilinearization (Bellman and Kala-
ba [2)).

3 The first four scctions of this paper follow closely those of an car-
licr paper presenied at the 1988 CISS meeting at Panceton University

{3}

1831
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This equation, which models the position y(¢) of a particle subject
1o force u(¢) and drag proportional to the square of the velocity,
cannot be integrated to yield an explicit function of 8 when given
the data [u(2).y(¢)] over [0,T] because (7) is not the total second
differential of any recognizable function z(¢,6) as in the case of
the model (4). What is needed is some kind of “‘integrating fac-
tor” to handie the nonlinear drag term since velocity is not a
measured  signal. Utilizing  the  differential identity:
p2@2)=2y(p7'y}+2(py 2, (7) can be equivalently represented by

P [’ (:»—;e.yz(r)l'ez“ ooyl ®

which is in a form suitable for later reference.

The inherent difference in structure displayed by the above
examples motivates the equation error identification techniques of
this paper. The desired propertics of any such technique can be
described abstracily in terms of an operator B whose domain coin-
cides with the range space of E and whose image element as a
function of 0 is expressed as:
e®)=B(E(y py,p"yupu,pmub) fora given data pair [u.y].
This integral-type operator should possess the following

properties: (i) e(6) can be explicitly computed as a function of 6
given the input-output data on a time interval {0,T] without the
need to estimate unknown initial conditions, i.e., time derivatives
of the data are not available, and (ii) e (8) provides a measure of
error in the parameters such that | | e(8) || =0 correctly refiects the
true value of 8 for a suitable norm || - || under ideal noise-free
conditions. Hence, the minimization problem: min || e () || facili-
tates the potential for obtaining a unique least squares estimate of
the parameters under appropriate nondegeneracy conditions on the
data. The ease with which such an operator B can be devised
possessing these properties depends strongly on the nature of the
model.

2. Structural Considerations

Motivated by the notion of an *‘exact differential’ in the cal-
culus, a system model of the input-output type (1) will be called
exact if it admits to the representation:

ny
EQpy. pryupu;ptu8)=3P@EOuE O
i=l o

where the P;(p), i=1,2,-n, are polynomials of degree <n in the
differential operator p and the E; are nonunique but sufficienty
smooth nonlinear functions of the triple (y.u8). If such a
representation does not exist, then the model (1) is said 10 be inex-
act. The significance of the medel being exact is that it is the
total differential of order n with respect to time 7 of some func-
tion z{r,8), i.c., there exists a sufficiently smooth function z(,8)
such that for each fixed value of 6:

"y
pz(£.0)=3 Pi(p)E; (y (1)u (1).8). (10)
i=1
Another basic model property important for sysiem

identification is that of separability with respect to the parameters.
Thus, the model (1) is said to be separable with respect to the
parameters if there exist scalar-valued functions h;(8) and
E;(ypy. ptyupi, p™u), i=1,2,-n,, such that

E.py-~ptyupu,pmub)

ny
=Y h(®E, 0 Py, p"yu.pupTu). an
i=1
In this case it is assumed that the vector function h (0) defined by
h(8)=col(h (8),h, (6)) satisfies the single-valued property:

h(B)=h(8*) if and only if 8=6*, (12)

All linear system models are clearly exacs and separable with
respect to the parameters. If a nonlinear system model of the
form (1) is both exact and separable with respect to the parame-
ters, then consistent with the above definitons it will admit to the
representation:

E(ypy, p"yupu, pTuB)=3h(@WP;@)E;yu) (13
i.J
for some polynomials P;;(p) in p, each of degree <n, and non-
linear functions E;(y .u), none of which depend on the parameters
8, together with a vector function A (0) which is assumed to satisfy
(12). Model (4) provides such an example via the equivalent
vector-matrix representation in (6).

Needless to say, inexact and nonseparable parameter models
are inherently the most difficult to handle. The following sections
will indicate ways of devising an operator B with the desired
equation error properties for exact and a class of inexact models. 4
For the most part these methods will be efficient only for models
which are separable in the parameters, or models which possess at
most one or two nonseparable parameters. Letting a denote the
nonseparable parameter(s), the model {1) can be referred to as
partially separable with respect to the parameters (,0) if it
admits to the representation (cf. (11)):

Eypy, p*yupu, pTu,a8)
=Y h(O)E;(y .py. p"y.upu, pTu,). (14)
i

Time lag systems with unknown delay parameters provide exam-
ples of such models. Furthermore, if the model (1) is both exact
and partially separable with respect to parameters (a.8) (cf. (13)):

Eypy, p"yupu; p™u,00)
=3 (B)P;; (pIE; (v 4 ). (15)
[

As before, the vector function h(8) comprised of the A;(8)'s in
(14) and (15) is presumed to satisfy (12).

3. Exact Differential and Separable Parameter Models

Consider the class of exact and separable models represented
by (13). In this case there exist at least two different ways of

"defining a linear operator 8 such that the nom of ¢ (8):

e @)= ()8 (TP,;(p)E; (v 1)) a6
i J

has the properties of a metric function given certain nondegen-

eracy conditions on the data [u(t).y (1)), 0<r<T. In general terms,

nondegeneracy is guaranteed if the set of functions

[DP,-J-(p)E,-(y(t),u(l))}, i=1,2-, are lincarly independent on

[OJ.T] and do not lie in the null space of the operator B. Then the
abstract equation ¢(€)=0 has a unique solution 8=0* which is the
desired value for the parameters under ideal noise-free conditions.
Further,
min | |e (8)] | provides a least squares estimate under nonideal con-
ditions.

4 Also discussed in [3) is an intermediate class of provisionally ex-
act sysiem modcls that reduce 10 exact sysiems when subjected 10 spe-
cial inputs over finite time intervals.
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3.1. Operator B Via Moment Functionals

One way 10 specify an operator B with the desired properties
is via the classical Shinbrot method of moment functionals, also
called the modulating function approach, which converts linear
differential expressions on a finite time interval into algebraic
equations (see [4]). Using Fourier based modulating functions,
this approach has been used in Pearson and Lee [5.6] to formulate
parameter identification of both linear and polynomial input-output
differential operator models. The basic ingredient here is a vector
&(1) of modulating functions defined as follows:

&) =Cf(t), 0<e<T an

where f(1) is defined by the (2L+1)x1 column vector of commen-
surable sinusoids

f(r y=col [1;cosm0r,sinmox; + « ;cosL @yt ,sinL mot] (18)

0<t<T, wo=2nT

and C is a (2L +1-n)x(2L +1) matrix whose rows are determined
by the end point conditions:

&) = T = 0, i=0,1,2(a-1). (19)

Here ®%)(r) means p? ®(r). Tt can be seen from (17) and (18) that
the time derivatives of ®(r) have the representation

o) = CDf(), i =012, (20
where D is an operational matrix defined by the block diagonal
structure:

D = modiag[o,[_?l (‘)] [_OL’(;] ] @1

To invoke the method of moment functionals for the model
(1) which possesses the representation (13): Multiply both sides of
(1) by ®(r), integrate over the time interval (0,7} and interchange
integration and summation over i, then use integration-by-parts
while noting (19) and (20). The result is the following vector
algebraic equation which essentially defines the operator B:

e(®)=Th B)CP;(D ;. 22)
iJ.
Note that the differential operator p in the polynomials P;;(p) has
been replaced by the block diagonal matrix D of (21). The V; are
(2L +1)x1 vectors defined by
T
v =£E, O (@) (). 23

As discussed in [5,6], these data-related vectors can be computed
by well known DFT/FFT techniques since they are finite Fourier
series coefficient vectors for the functions v; ()=E ,-(y(r).u(:)) on
[0,T]. The Euclidean norm of e () in (22) then provides a metric
function p(6,8*) on the space of adjustable parameters, and the
square of this norm defines a suitable function J(8) for least
squares minimization:

J(@)=h" (©)QR(8) 24)

where the (i.j) component of the symmetric nonncgative definite
matrix € is given by

(Q),,=ZV, Pu D IC'CP (D V. 25
il

Hence, the major computations lo set up the lcast squares problem
in this approach is to calculate the vectors of finite Fouricr series
cocfficients for the data related functions Ej(y(l),u (1)) followed
by the inner products involving these vectors in (25) 10 obtain Q.
The null space of the operator B is essentially all functions which
are orthogonal to the sinusoids comprising f() in (18). Hence,
choosing a sufficiently large integer L shnnks the null space so

that from a practical standpoint nondegeneracy for the least
squares problem means linear independence of the functions

[ZPU(P)E,'()'(‘)TU (), i=1,2, on [0,T). However, based on

i

finite bandwidth considerations, choosing L large will necessitate
a smaller ‘resolving frequency’ wy and therefore a longer [0.T]
interval, as seen from (18). These issues are more fully discussed

in [5].

3.2. Operator B Via State Variable Filters

Another such B operator is basically a projected state varn-
able filter (see {7.8]). Its specification can be summarized as fol-
lows. Let F(s) be a polynomial of degree larger than n chosen
by the user so that F -I(s)P(s) is a strictly proper and stable
transfer function matrix with the polynomial matrix P (p) defined
by the P;;j(p) in (13). Let the filtered signals z;(r), 0st<T, be
defined implicitly by zero staie solutons to the differental opera-
10r equations: ’

F(P)Z.'(f)'—'ZP.'j(P)Ej(Y(f)-“ ). (26)
J

In order to obviate dealing with all unknown initial conditions
define a projection of these signals on [0,T] by the relation:
T
5, ()=z2;(1)—c,eMW! &e"‘co’z,-(t)dr. 0st<T @n

where (A.c,) is an observable realization for the homogencous
equation: F (p)z(1)=0, and W-! is the inverse of the observability
Gramian for this realization over [0,T], i.c.,
g T
W=leric, coetdr.
0

Then the integral squared norm of the following function
e '9)=zh.‘ (0)z;(r)
i

has the desired metric properties in that the square of this norm
defines a suitable function for least squares minimization:

T
J(@)=h"(8) Ji(r)i'(!)dt h(8). 28
0

Here (1) stands for the column vector of functions with com-
ponents Z;(¢). Hence this specification of the operator B essen-
tially involves integrating the linear differential equations (26)
with forcing functions v;(t)=E;(y (r).u (1)), performing the projec-
tions in (27) which strip away the affect of unknown initial condi-
tions, and calculating the Gram marix for these projections in
order to define the least squares function (28).

3.3. Partially Separable Parameter Models

Consider the class of models which are exacr and parsially
separable with respect to parameters (0,9) so that the representa-
tion (15) holds. In this case the least squares functions of (24)
and (28) will take the forms

J(@.8)=h" (O)(c)h (8). 9
and
T
J(@®)=h"(®) | [F (.00 .a)dr | h(8) 30
0

respectively. It is seen that the dependence on the nonseparable
parameter @ comes through the V, vectors for {1, i.e.,
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T
v; (a)=££, CRALQL

while the filter signals z;(¢) depend on a via

2, (1, )=F () TPi; (P E; O 4.0)-
i

If the source of the nonseparability is a delay parameter, e.g.,
Ej(y(x).u (£))=E; (y(t)u (t—a)), then as shown in Pearson and
Wuu {9] for differential-delay equation models, it is possible to
derive the ‘variable projection’ functional using nonlinear least
squares theory [10] in order to first estimate the o parameters,
after which the separable parameters may be estimated as before.
In this way, it is possible to decouple the difficult-to-estimate @
parameters from the more straightforward © parameters.

4. A Class of Inexact Differential System Models
Suppose the model (1) admits to the representation

E(ypy,p"yupu,pTu.b)
=Zhi(e)Fij0’»u)P.',’(P)Ej0’»“) a1
i.j

where again the P;;(p) are polynomials in p of degree <n and the
vector function A (6) comprised of the h;(6)’s satisfies (12).
Model (7) is an example of this class when expressed in the
equivalent form (8). It will now be demonstrated that under cer-
tain smoothness conditions pertaining to the data-refated functions
8;(®) defined by

8ij(=F ;o (1)), 0u<T 62

the method of moment functionals of the previous section can be
used as a kind of ‘integrating functional’ for the inexact model
(31). In order to do so, it will first be noted that the multiplica-
tion of any modulating function ¢(r) of order n over [0,T] by an
arbitrary 7 -times continuously differcatiable function g (r) defined
on [0,T] is again a modulating function of order n on [0,T]. That
is, given that a n-times continuously differentiable function o)
satisfies the end point conditions:

o0)=0¢AT)=0, i=0,1,2,(n~1),

the function §(f)=g (t)¢(r) satisfies the same end point conditions
for any sufficiently smooth function g (1) on [0,T]. Relative 10
the functions g;(r) of (32), it will be assumed that each such
function can be represented to any desired degree of accuracy by a
finite Fourier series, i.c., for a sufficiently large integer M,

M
8,j(0)= X [a;;(m Ycosm ot +b;j(m)sinmwgr], 0se<T (33)
m=0
where the (a;;(m).b;;(m }) coefficients can be computed via well
known DFT/FFT techniques for each g;; (1) function.

Now invoke the method of moment functionals for the model
(1) satisfying (31) using the Fourier based modulating functions
defined in (17) and noting the aforementioned property of such
functions. Thus, multiply both sides of (1) with the representation
(31) by @@) while using the expansions (33) for each
Fij(y(r),u(z)) function in (32), integrate over the time interval
[0,T] and interchange integration and summations, use
integration-by-parts while noting (19) and (20), and take into
account the trigonometric identities:

2coskx cosmx =cos(k =m )x +cos(k +m )x
Jsinkx cosmx =sin(k —m Jx +sin(k +m )x

2sinkx sinnte =cos(k —m Yx —cos(k +m)x.

13 - \

The result is the vector algebraic equation: 5

e (e)=§h, OW (i )V, (34)
where the matrices W (i ,j) and vectors V; are defined as follows:
Wa=C ﬁ_o la, (m)0n4b, (MR P D) (35)
T
x‘z,=£s,cy(z).u (£))F)dr. ' 36)

The matrices Q,, and R,, in (35) are quasi-banded structures that
arise from the interactions between the basis functions in (33) and
the commensurable sinusoids comprising the Fourier based modu-
lating functions in (17)-(18). Their precise representations can be
found in Equations (25) and (26) of Pearson and Lee [11] where
they arose in a different context. The tilde over the various
expressions in (34)-(36), in particular D in (35) and I(1) in (36), is
meant to indicate that the harmonic frequencies in these terms
extend out to (L+M)w, again, this is due to the interactions
between the sinusoids in (33) and Fourier based modulating func-
tions. The fact that the Fourier series coefficients for these higher
order harmonics have to be computed is of minor importance from
a computational viewpoint since the DFT/FFT algorithm will yicld
many more frequencies than are actually retained if a high degree
of accuracy is employed. (Refer to the discussion in Section 2.2
of [5].) However, noise in the data is important which may neces-
sitate a longer time interval for the data, i.c., a shorter resolving
frequency wg=2r/T , in order to cut off high frequency noise in the
higher harmonics.

The equation error expression in (34) essentially defines a B
operator with the previously outlined desired properties, together
with a kind of ‘integrating factor’ property to handle the inexacr
aspect of the model (31). As before, the Euclidean norm of ¢(6)
in (34) can be used to define a positive definite function J(8) suit-
able for least squares minimization.

8. Uniqueness of a LS Estimate for Separable Models

The single-valued property assumed for the function A () in
(12) makes the statement of conditions for a unique least squares
estimate more transparent than the conditions attending other
models and approaches. To elaborate on this a bit more in

relation to the separable model (11) let the functions v;{r) be
defined by

Vi(O=E;(y (1) py (£)-p y @), pur))
and define £(1,0) by

A
E(l ,9)= Eh" (9)V,' (l )
i=1
Suppose 0% is a value of the parameter vector such that €(s,8* )=0
for any input-output pair [u(r).y(¢)] on [0,T]. Thus for any par-
ticular input-output pair leading to a particular sequence of func-
tions v; (1):

ny
€.0)=Y [h‘- (8)-h, (8* )]v, ).
i=l
Hence uniquencss of any least squares estimate is predicated on
linear independence of the data-related functions v, (1), i=1,27ny,
on [0,T]). In turn, this dictates linear independence conditions on
the input-output data and its derivatives in order to guaranice
uniqueness. Of course, it is the projections of these functions via

S 1t is assumed that L2M; if not, simply add more modulating
functions until L2M.
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the operator B that must be used to test uniqueness since deriva-
tives of the data are not presumed to be available.

As an example for comparison with other models and
approaches, consider a two companmental model from chemical
kinetics (Example 7.1 in Walter [12]):

¥ (0)==01y (1)-8,(1-83x 1))y (1 )+u (¢) (37N

X2(8)=8,(1-03x (1 ))y (£)-04x (1)

where (0,,8,,8,,8,) represent parameters to be determined given
the data [u(2),y(t)] over. some time interval. Under the assump-
tion that y () is positive for all ¢ of interest, i.e., y(£)>0, 0t <T,
the following differential operator equation can be derived by
climinating the state x,(¢) from the above equations:

10000 y (1)

YA | B
00p10[|_ S

0000 1|[*H®

1 01,2 y()
+[(P+l)(y(t))] [p +p.p+1] [—u(t)]=0 (38)

where the components of the vector function #(8) are defined by:
h |=619293’ h2=9263, h3=94. h4=(91+92)94.

Bearing in mind the previous discussion for the model (31), first
approximate the function l/y(t) by a finite Fourier serics as in
(33) with coefficients (a(m),b(m)) and then replace the pairs
(@(m),b(m)) in (35) by the pairs
(a(myrmwob(m).b(m)-mwea(m)), thereby  achieving an

approximation to the function (p+1)X(1/y (1)) which plays the role
akin to g;; () in (32).

The validity of extending the model (31) 10 the example (37)
will require a greater degree of smoothness on the part of the data
since the differential expression (p+1)(1/y(r)) is evaluated in
terms of the approximation for 1/y(r). However, apart from the
question of approximation, it is noted that since there is a one-10-
one map between h and © (except for a set of measure zero) the
necessary and sufficient conditions for the existence and unique-
ness of solutions 1o the parameter identification problem entail
linear independence of the four signals:
{y (), py (0)—u (), p(ny (¢ N-u )y (1), 1} on [0,T]. This should
be compared with the ‘generating series’ analyses given in {12]
for deciding the issue of ‘structural identifiability’ of the model
(37). That is, not only is the issue of ‘identifiability’ resolved by
inspection of (38), but the conditions for the uniqueness of a least
square estimate can be related to linear independence of the pro-
jections of the appropriate signals.

6. Conclusions

Input-output nonlinear differential operator equation models
have been classified according to the calculus notion of exaciness
for differential expressions. It has been shown that exact
differential models can be integrated to yield a positive definite
function suitable for least squares parameter identification given
the VO data on a finite time interval. This is not possible for
inexact differential models. However, under a smoothness condi-
tion on the data, a kind of ‘imtegrating functional” has been found
via the classical method of moment functionals that permits
integration of the parametrized equation error for a class of inex-
act models. The formulations also facilitate determining condi-
tions on the /O data that guarantee uniqueness of a least squares
estimate.
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Abstract

If a specified set of parametrized nonlinear state differential
equations possesses an equivalent input-output differential opers-

The latter model clearly fails 1o be identifisble no matter what
definition is employed since it is completely independent of the
panameter 8. A less obvious example is the following second
order system (this is Example 1 in [3]):

tor model, then the latter model has the potential for deciding the cs 3

issue of the idensifiability property of the former model in a 2mByx{ +8x 1 rtu

straightforward manner. This property is discussed in relation to .

the property of well-posedness for the least squares parameter '3'8”?*'6""2 ©)
identification of a class of input-output models that are separable y=,

in the parameters.

If it is assumed that y(¢) is of fixed sign for all re[0,T], .8,

Introdnction y()2>0, 0<:<T, then (5) has the following equivalent O rela-
tion: ’
State differeatial equations of '*: form Piny P (5)-8,7y +(8,8,-8,0,n 4o,y =0  (6)
x=fGud) where p(iny)=y/y. The identifiability property of this example
y=h(x%,8) Q) (actually the nonidentifiability) will be made evident after a dis-

constitute the most commonly used starting point for investiga-
ions into the parameter identification of deterministic nonlinear
. differential systems. Given the input-output data {u(t).y (1)} on

some time interval 0sr<T, together with the functions f (x 4 ,8)
and A(xx,0), a number of methods are available for estimating
the parameter vector @ such a5 ilinearization, invariant
embedding and the like. A theoretical issue considered by
several investigators, e.g. [1-3), is that of the *‘identifiability’* of
the model (1). Although the definitions vary somewhat from one
investigator to another, failure of the model (1) to be identifiable
usually means a kind of over-parametrization or degeneracy in
that it cannot be demonstrated that there exists a suitable input

signal u(r) and/or initial state xg=x (0) such that the integration .

of the state equations corresponding to any two distinct parame-
fer vectors 6, and 6,, 6,w0,, gives rise fo solutions y, (+) and

cussion of a subclass of the model (2) which includes (6).
Separable 'O Models

Consider the generic model (2) which is separable in the
perameters, ie., there exist scalar functions §g;(8) and
Eio"y-"?'yv"ﬁ" 1'?.“)0 i"rzn"“h such that the function E
in (2) admits to the representation

EQ oy, p"yupu, p=u8)

m

For sny input-output pair [ (e)y ()] on [0,T], let the functions
v;(r) be defined by

-‘}%:;N)E;On.-r'y.u.w ~PTu)

7, (:) that can be distinguished from one another on [0,T]). An v (0 =E; &y )y (1) Py (1) (1), p™u (1)) ®)
equivalent input/output differential operator model of the generic
form i 81,2"“ 1
and define e(8,1) by
E(ypy P yspu, p=u 00 @ CCH )-‘2::.- (Q)V; (). ®

where p denotes the differential operator d/ds 0 that p2=d?/ds?,
w..mmepmﬁﬂfamahngmkdetcmimﬁonmm-
sparent provided such an equivalence exists.] A simple example
nlnmﬁngmisdmadonis&emlubﬂinenmnm(ﬁumplez

If 6 ismy"nlue of the system parameters distinct from 6 and
[()y(:)) is any valid input-output pair, then the function
&(6,0% 1) defined by

in [2)): 5(6,6* 1 )me(8,1)-€(0* 1) (10)
xulex+(14x ) . )
' = R . (B* R
yud(14x). (o)) ‘}_:; 2:(8)-¢:® )]V. ®
which has the equivalent input/output ('O) relation makes clear the necessity of the single-valuedness of the vector
y=y +yu. @) function g(6) comprised of the g;(8)'s, Le. the condition:

! The motivation for this snudy stems from the development in [4]
oflhuuqummsdmﬁond;m&mwhichnnppﬁublen
mdnmbdmofﬂzpnﬂ'icnodela).

" CH2642-7/89/0000-0624$1.00 © 1889 IEEE
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2(0)=g (6*) if and only if 6=6* 1)

hwdumymmmuﬁmﬁm»hmhndmﬂu
10 mode! (2) which is separable in the parameters according to
(7) is doomed to failure. This is clear from the consideration
that 5(6,0* ) can provide for the basis of 8 metric function in



he parameter space oy f (11) boids? Suted in an alierative
ny.myhﬂsqumesﬁmﬁonwhcmwhichkbasedon
hyut-onzputdmfor&emodelmwiﬂnotbemll-posedif(ll)
fails.

wzw:m(giﬁ,-)falhemdel(&mbe
defined a5 ’

=L 22261, 230,065, g8 (12

sn’(hy)-p(%). Espy, Ey>® Egu-py. (13)

Since both 1O models (4) and (6) possess g () functions that
fail to satisfy condition (11), i.e. g(8) is degenerate in (4) while
(12) makes evident the over-parsmetrization of (6) with respect
hd\e(ﬁz.%)pu:mem.thaedosnotexinaninputﬁmcﬁon
u(r) which would facilitate 8 unique
parameters given the input-output dann?

Assuming that condition (11) holds for an /O mode! of the
gnaicfwnm.nmmmwmbledmthchuuqnnusﬁ-
mation problem is well-posed. However, the question of unique-
pess of an estimate is data t and is more difficult to
answer, especially when only input-output data (no derivatives)
is available. The following example illustrates this point. (This
45 Exsmple 7.1 in {1].)

Emk&Ammmﬂdk&ﬁmﬂW
% =-8,x ~0,(1-8yx)x p+u
% gmB,(1-8yx 2)x ;=612

y=.

Eliminaﬁngdnmx;.meqnivdmtlmmodelisfamdbbev

r’(hy)-p(ﬁhexﬁzw%%(m-u)

+0, Fany)—%]«e,w,)e‘-o.

Here the representation (7) bolds with
£:6,0:6;, g:76:8;, 384 84=(61+80,

Em=y, Egpy-u, E,-p(lny)—-;i. E=l1.

3 A physically realizable metric function p(5,5*), which is
characterized by any particular input-output pair [u (1) ()] o0 o1l
anhedeﬁnedonlyiflwxymbcfoundmovuoomememityof
dealing with the derivatives of the data; -such a way is discussed in [4]
through the use of projected state variable filters or moment functionals
for special subclasses of the mode! (2).

3 Nonidentifisbility of these exampies was also concluded by the
suthors in 2] and [3]. -

determination of the 8
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The above function g(8) is single-valued and mareover is one-
to-one (except for a set of measure zero), bence, the least
squares problem is not only well-posed but it is also basically
Enear in the B=g (6) parameters. A least squares estimate will be

"gnique only if the corresponding regressor functions arc Lincarly

t on [0T] which for this example means linear
independence of the functions:
vy (e), Ve (s ()

1010 SRy

w0

Conduding Remarks
The above examples make clear the pecessity of a single-

““valuedness property of sn equivalent input-ouput differential

mode] in testing the identifiability of the state equation

- operator
. model(l)fathechssofl/Omodelsinm. Stated another way,

Q)

825

thekutsqumpnmcmesﬁmﬁonpoblemwﬂlnotbeweu-
posed for this class unless property (11) bolds. The conclusion
seached in each such example is consistent with the results
obtained by the cited investigators but seems easier t0 reach
when an equivalent VO model exists. The question of unique-
pess of an estimate will depend on linear independence of the
data-dependent regressor functions. The latter question is more
difficult to answer owing to the mecessity of projecting these
functions down into & subspace (using for example state variable
ﬁlm)inada'bobvinedalinzwiﬂ:nbowniniﬁﬂmd
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PARAMETER IDENTIFICATION
OF LINEAR DIFFERENTIAL
SYSTEMS VIA FOURIER
BASED MODULATING
FUNCTIONS®

A.E. PearsoN! anp F.C. LEE?

Abstract. The parameter identification of linear differential systems is consid-
ered from the viewpoint of Shinbrot’s classical method of moment functionals using
commensurable sinusoids as the modulating functions. This facilitates a least
squares formulation in which the underlying computations require calculating a finite
set of Fourier series coefficients of time limited input-output data while avoiding the
necessity to estimate unknown initial conditions for a one-shot estimate, or un-
known boundary conditions at each stage for sequential least squares. It is noted
that a fast Fourier transform algorithm can be utilized for these calculations, thus
providing a “fast algorithm” for the identification of continuous-time systems. It is
shown that the frequency domain interpretation can be useful in enhancing the
signal to noise ratio of the modulated data in the presence of noisy measurements.
A maximum likelihood estimate is developed for the stochastic case of additive
white gaussian noise in the data which effectively removes the bias when the
parameter identification is considered in a recursive mode. Simulation results are
included to illustrate the developments.

Key Words—Parameter identification, continuous time linear differential systems,
least squares estimate, maximum likelihood estimate, Fourier modulating functions,
fast Fourier transform algorithm.

1. Introduction

The identification of linear differential systems can be undertaken in a
deterministic vein using the classical steady state frequency domain approach
for estimating the system transfer function, or using a variety of methods based
on a differential equation model in the time domain which would include
quasilinearization, state variable filters, model reference techniques and adapt-
ive observers (Young's survey, 1981). In a stochastic vein, the known methods
would include generalized least squares, instrumental variables, maximum
likelihood and extended Kalman filtering techniques (Young’s survey, 1981;
Astrém, 1981). The deterministic methods are computationally simpler but may
incur significant biases in the presence of noise. The stochastic methods, while
promising to remove the biases asymptotically, are computationally demanding
to a degree that they are more likely to be found discussed and used in a

* Received by the editors June 18, 1985 and in revised form December 9, 1985.
This research was supported in part by the National Science Foundation under Grant ECS-
8505799 and in part by the Air Force Office of Scientific Research under Grant AFOSR-85-0300.
! Division of Engineering, Brown University, Providence, R1 02912, U.S.A.

- 2 Institute of Control Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC.
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discrete-time format. Although a continuous-time model can be constructed
from a discrete-time counterpart, the methods for accomplishing this are
unwieldy and potentially unreliable due to such difficulties as nonuniqueness.
Hence, a direct attack on the problem is clearly preferred if a continuous-time
model is desired. Such is presumed to be the case here.

Another classical method that can be applied to linear differential systems is
Shinbrot’s method of moment functionals, also called the modulating function
approach, which facilitates converting a differential equation on a finite time
interval into an algebraic equation in the parameters (Shinbrot, 1957). In this
regard let p denote the differential operator d/dt so that p? = d?/df?, etc., and
consider the following nth order differential equation model relating an input-
output pair (x(#), ¥(#)) for a single input-single output system:

n n-1 i
20 (1) = Z b Pul), G0 = 1. (1)

As introduced by Shinbrot, ¢ () is a modulating function of order »n relative to a
fixed time interval [0, T7 if it is sufficiently smooth and possesses the property
that

$P0) = ¢“(T) =0, i=0,1,..,(n-1), (2)

where ¢®(f) means p¢(t), i.e., ¢(1) and its first (n—1I) derivatives vanish at
both end points of the time interval [0, T]. The significance of this property for
system identification stems from the fact that if (u(f), y(¢)) is presumed to
satisfy the model (1) on [0, T] then the multiplication or modulation of both sides
of (1) with ¢(¢) followed by integration-by-parts over [0, T], while noting (2),
leads to the relation,

3 (-1 o f y(eP(t)dt
b= 0

n-l T
= 2,1 b [ whgOtdt a0 =1. (3)

Furthermore, if {¢:(t)}, i = 1, 2, ..., K, is a set of linearly independent
modulating functions of order » on [0, T, a vector algebraic equation results
which can be used to obtain a least squares estimate of the parameters (a;, b;),
i=1,2,..., n provided some nondegeneracy conditions are upheld. It is noted
that the prime reasons for using such modulating functions are to avoid
differentiating the data and to avoid estimating unknown initial conditions for
time limited data.

- The above idea has been pursued using modulating functions which stem
from Hermite polynomials, as in Takaya (1968), the Poisson process, as in
Fairman and Shen (1970) and Saha and Rao (1979; 1980; 1982; 1983), spline
type functions, as in Maletinsky (1979), and trigonometric or Fourier type
functions, as in the authors’ (1983)". However, with the exception of Shinbrot
(1957), Maletinsky (1979) and the authors’ works (1983; 1985), it will be found

+ The extension to other models has also been considered such as linear time varying systems with
polynomial coefficients (Loeb and Cohen, 1965; Fairman and Shen, 1970; Saha and Rao, 1983) and
certain types of nonlinear models (Shinbrot, 1957; Saha and Rao, 1983; Pearson and Lee, 1985).
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that certain anomalies exist in the other formulations cited in that either a very
long time interval is assumed, or the initial conditions are constrained in some
way, etc. Notwithstanding these anomalies, the modulating function method has
remained relatively obscure due in large measure to the rather severe computa-
tional burden associated with the linear functionals on the data in (3). Thus, with
the current emphasis on recursive methods in system identification, computing
these linear functionals at each stage appears cumbersome unless some type of
“fast algorithm” is available. Since the fast Fourier transform (FFT) is such an
algorithm for the discrete Fourier transform (DFT), and since the latter can be
used to calculate the Fourier series coefficients of a time limited signal with
great accuracy, it appears as though the modulating function approach should be
re-examined for continuous system identification using Fourier based modulat-
ing functions. Although some aspects of the formulation have been developed in
the works cited earlier, a number of issues remain to be examined even in the
linear case. These include the handling of noise, structure determination
procedures, optimal inputs for parameter identification, as well as the experi-
ence to be gained via simulation studies.

The contribution of this paper is to show how the frequency domain
interpretation can be used to advantage in ameliorating the effects of random
noise even in a deterministic setting and, further, to develop a maximum
likelihood estimate within the context of the modulating function approach in
order to eliminate the bias in the sequential least squares estimate when the
data is corrupted by additive white gaussian noise. The maximum likelihood
estimate will be a modification of the Levin (1964) algorithm for discrete
systems identification, later analyzed in detail by Aoki and Yu (1970 a; b),
tailored to fit the formulation of this paper for differential systems identification.
Computer simulations will be presented to illustrate each of the developments.

2. Least squares estimate

A deterministic least squares estimate is formulated in this section given the
input-output data (#(#), y(f)) over a fixed time interval [0, T] for a one-shot
estimate, or over a sequence of time intervals [#, £4:), ¢ = 0, 1, ..., each of
duration 7, for a recursive estimate. Consider the set of commensurable
sinusoids {cosmwo!, sinmwet}, m =0, 1, ..., M, where wo = 2a/T plays the
role of a “resolving frequency” in the identification problem. This role will be
discussed in the section on computational considerations along with guidelines
for choosing (7, M). It could be expected that for a specified order = in the
model (1) there cam be found any desired number of linearly independent
modulating functions simply by choosing M sufficiently large and subjecting
appropriate linear combinations of these sinusoids to the end point conditions
(2). Although there are many ways of doing this, a systematic procedure is to
separately form linear combinations of functions from the two sets {cosmwot}
and {sinmwot}, m =0, 1, 2, ..., M, and subject each combination to the end
point conditions (2), the only stipulation being that M satisfy (2M+1-n)>0. As
shown in the Appendix, this (offline) procedure leads to (2M+1—n) linearly
independent modulating functions, ¢,(t), i =1, 2, ..., (2M+1—n), which can
be put in the vector-matrix representation:

®(1) = Cf(h), 0st=T, (4)
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where f(f) is defined by the column vector of sinusoids:

A1) = col [1, coswet, sinwet, cos2wol, sin2wet,
veey COSMwot, sinMwgt],
0=<t=<T, wg = 2xa/T, (5
and the rows of the 2M+1—-n)x(2M+1) matrix C are determined by the
solution to Vandermonde type matrix equations. Further shown in the Appendix
is the important fact that the matrix C has full rank. The role of this matrix as a
projector for the least squares problem will be clarified below. Since by

construction &(?) is a vector of modulating functions of order » it satisfies the
end point conditions (2):

0= dN(T) =0, i=0,1,2, ..., (n-1). (6)

It can be seen from (4) and (5) that the time derivatives of &(f) have the
representation,

(-D'e?(t) = CDf(1), i=0,1,2, ..., (7

where D is an operational matrix defined by the block diagonal structure:

emm[$ [ [58]) @

Multiplying both sides of the model equation (1) with @(#) followed by
integration-by-parts over [0, 7], while noting (6), there results the vector
analog to (3):

”n T
&, (~1) an, f (1) (1)dt
= 0

n-1 T
= 20 (-1y b.._,-f SO(u(t)dt, ao = 1. (9)
= 0

Taking note of (4), (5) and (7), the preceding equation is equivalent to
-1

S 4..CDY =%

= - bH CD’U, ag = 1, (10)

where (U, Y) represent finite Fourier series coefficient vectors of the data
defined by

T T
U= f WAL, ¥ = f YO DL, (11)
0 0
Rearranging (10) in terms of the parameter vector 6 defined by
6 =col[-a,... ~a,, by ... b,] (12)

and the partitioned matrix I" defined by



21

Parameter identification of differential systems 243
r=[py..v,DnpU.. U]-, 13)

there results the least squares regression equation in standard form:
Ccre = CD"Y. (14)

Hence, forming the normal equations for (14) and assuming that CT" has rank
(2n), the one-shot least squares estimate is given by (prime denoting transpose)

é = [F'C'CIT'I'C'CD"Y. (15)

Here, it is assumed that a sufficient number of modulating functions have been
chosen so that

@2M+1-n) = 2n, i.e., 2M 2 3n-1 (16)

else there are fewer algebraic equations than unknowns upon which to base the

one-shot estimate.
In the case of sequential least squares, (14) is replaced by

Crae=Ccp'Y@#),i=0,1, 2, ..., (17)

where at each stage the underlying quantities are supplied by the finite Fourier
series coefficient vectors of the input-output data taken over sequential time
intervals [¢, £;+1], i = 0, 1, 2, ..., each of duration T. Standard sequential least
squares theory can then be applied to (17) in constructing a recursive solution
{6(i)}. (See, for example, Mendel (1973).) In this case the number of
modulating functions need be chosen subject only to the previously stated
inequality: (2M+1-n)>0, c.f. (16).

2.1 Aspects of the least squares estimate The parallelism between the
differential equation model (1) and the algebraic equation derived in (10) may
suggest the interpretation that the latter is a transformed version of the former.
However, it is important to underscore the facts that (i) (U, Y) are finite Fourier
series coefficient vectors extracted from the infinite dimensional transient data
on [0, T], and (ii) the matrix C plays the role of a projector on the finite
dimensional space to which the computed vectors (U, Y) belong because this
matrix acts to “strip away” the explicit influence of the unknown initial and
boundary conditions, i.e., without this matrix the unknown boundary conditions
on derivatives of the data would have to be appended to (10). These two
projection aspects can be used to distinguish the Fourier based modulating
function approach from other methods'.

Conditions on the initial data and forcing function for (1) which would
guarantee the existence and uniqueness of the one-shot estimate in (15), or
convergence of the recursive estimate based on (17), have not yet been

+ An alternative method which employs state variable filters and a projection operator to annihilate
initial condition effects of an integrated equation error function on [0, T} is discussed in Pearson
(1976). Comparatively, it is believed that the Fourier based modulating function approach is
superior due to the computational advantage of employing the FFT algorithm and the potential for
ameliorating noise.
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determined but will surely involve the notions of minimality of the model,
excitation of system modes, and the like. As necessary conditions, it is
straightforward to show that the system must not be in steady state operation
and that the input must not be a linear (zero memory) feedback on the output,
else some columns of CI' will be linearly dependent. Likewise, each of the
Fourier coefficient data vectors (U, Y) must contain at least » nonzero
components, i.e., at least n frequencies must be present, else linear depen-
dence will occur. In this connection it can be noted from (10) and (13) that order
determination for the model (1) (within the context of the Fourier based
modulating function technique) relates to finding the smallest integer n for which
the columns of the following matrix become linearly dependent:

c [p*Y, DY, ..., Y, D"'U, ..., U]

Procedures for testing such linear dependence will also reflect back on condi-
tions involving the initial data and forcing function for (1). Hence, effective order
determination procedures and conditions for the existence and uniqueness of the
least squares estimate are important interrelated topics for future investigation.

2.2 Computational considerations  The choice of (T, M) can be guided in
reference to the amplitude plot of a system transfer function sketched in Fig. 1.

Amplitude

T T o = Frequency
Wy Wo Wo We Wo| Wo

We

Amplitude A

As T is doubled

| —== Frequency

Fig. 1. A frequency domain interpretation.
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As a first consideration, which is based on the desire that the frequencies
retained in the pair (U, Y) should cover the system bandwidth while excluding
higher frequency noise, it is clear that the highest frequency in the modulating
functions, Mw,, should be comparable to the system bandwidth W,, say 25%
higher. Assuming W, is approximately known, a quantitative statement of this is

Muwy = 1.25W,. (18)

Likewise as shown in Fig. 1, the value of T should be chosen sufficiently large so
as to assure reasonable resolution in distinguishing system modes of the
transfer function, via the resolving frequency wo = 2a/T. However, this
consideration is rather qualitative. A more quantitative measure of choosing T
can be based on the bandwidth relation (18) and the number of algebraic
equations formed from the modulating functions, i.e., (2M +1—n), together with
the total number of such algebraic equations one wishes to use in constructing
the least squares estimate. Thus, considering the case of a one-shot estimate, if
it is desired that the number of such algebraic equations should approximately
equal double the number of unknowns, then M should satisfy (2M+1-n)=4n
which together with wo = 2x/T and (18) implies the relation (2# unknowns
presumed):

Ann (19)

T=y

"

Based on approximate knowledge of the system modes and a prior:
knowledge of contaminating noises in the frequency domain, it will be advan-
tageous to be more selective in choosing the frequencies used in defining the
modulating functions'. If mwe, ¢ = 1, 2, ..., M represent such frequencies
where the m; are integers satisfying m,<m,,, and M satisfies (2M—n>0), the
formulation is easily modified to reflect this selection by changing f(#) in (5) to be
defined as . .

f(t) = col [cosm,we!, sinm wet, ..., cosmwet, sinm,wet] (20)

and redefining D in (8) as

_ . 0 m 0 m, 0 my,
D = w, diag [ [-mx 01]' [_mz 0], ey [—m,, 0 ] ] (21)

The simulation results will illustrate the advantage of this flexibility®.
The most important computational aspect of the Fourier based modulating
function approach is the direct frequency domain interpretation afforded by the

+ For example, the zero frequency can be deleted if there is an unreliable DC value in the
measurements.

t It should be noted that the simple structure of the operational matrix D in (8) or (21) makes easy
the computing of powers DY, 0=i=<n, as required in (13)-(14). Although alternative rearrange-
ments of the sinusoids comprising Rt) in (5) or (20) are readily accomodated by rearranging
columns of C, any such rearrangements will generally alter the convenient block diagonal
structure of D. -
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vectors (U, Y) and the efficiency with which these vectors can be computed by
an FFT algorithm. In order to clarify this point, let z(f) denote a data function on
[0, T] and assume uniform sampling in generating the discrete samples
z;=2(ih), h=TIN,i= 10,1, ..., N. Then (5) and (11) imply determining the
following integrals (complex form):

T
f z(hexp(ymwet)dt, m = 0,1, ..., M.
0

Although the real and imaginary parts of the above integral can be evaluated by
passing z(f) through a bank of appropriately tuned harmonic oscillators, greater
flexibility is offered by using well known digital approximations. For example,
the standard parabolic rule yields

T
fz(t)exp(jmwot)dt

0

=—3—l:zo+z,v + 4',:1’3'_”2,'W *2.-=2,4,_.Z,"W ] + o(h%),

where W = exp(j2x/N) and o(.) is the order of the error as a function of the
sampling interval . Assuming N is a power of 2, the usual FFT algorithm can be
used to evaluate the DFT of the sum on the RHS of the above yielding the

Fourier series coefficients for m = 0, 1, ..., (N~1), i.e.,
V4 =%FFT [zo+zN, 4z, 224, ..., 42,_, ] (22)

The computational savings of this algorithm for large N are well known.
However, a special FFT-type algorithm can be devised in consideration of the
fact that only M Fourier coefficients are needed and that N is likely to be chosen
much larger than M for good accuracy in the approximation. The efficiency of
such a partial FFT algorithm can be shown to be log,M/M (Markel, 1971; Lee,
1984).

2.3 Simulation results for the one shot LSE

2.3.1 Low pass system Consider first the low pass system defined by a
Butterworth filter with bandwidth 5 [rad/sec] (see Fig. 2(a)) and the transfer
function, '

125
s> + 10s% + 50s + 125~

Hy(s) = (23)

The objective is to identify the four unknown system parameters 6 = {10, 50,
125, 125} using the one-shot least squares estimate (15) based on time limited
input-output data over a T = 27 [sec] time interval with the initial conditions
arbitrary and the input drawn from a colored gaussian random signal generator
with bandwidth 5 [rad/sec]. A sample of the input, the corresponding noise-free
output, and the output contaminated by an additive white gaussian noise with a
20% RMS noise-to-signal ratio is shown in Figs. 2(b), (c) and (d), respectively.
The Fourier series coefficients for the first M modes in the data were calculated
using the first M components of the parabolic approximation (22) with either
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60 — Data from ten runs averaged
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Fig. 2. Least squares identification of H,(s).

N = 256 or N = 512, as indicated in Fig. 2(e)". Since the number of unknowns is
4, the minimum number M needed for a one-shot estimate is based on
(2M+1-n)=4, i.e., M=3. Due to the random nature of the signals, ten

separate runs have been made for each M from 4 to 13 and the results averaged

to yield the curves plotted in Fig. 2(e). The normalized error criterion for the
estimated parameters is defined by

1

1 & a._ax17 2
| a6 = [—K-Z [0' e,*” - 100% (24)

s=] e;‘*

where 6,* is the true parameter value and K is the number of parameters.

+ The IMSL (1982) was used to provide the integration routine (DVERK) for generating the
“continuous” data and as the source for an FFT algorithm to compute the DFT’s of the “sampled”

data.
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Except in the noise-free data case, which gives essentially zero error for any
M=3 and either N = 256 or N = 512, the results summarized in Fig. 2(e) show
that a minimum error is reached around M = 6 or 7. This is explained by the
consideration that as M increases from the minimal value needed to satisfy the
modulating function constraints (2), i.e., M = 3, the estimation error decreases
because more information in the data is used until somewhat beyond the system
bandwidth at which point more noise than signal will be picked up causing a
deterioration in the identification accuracy. Taking account of the Bode plot (the
dotted curve in Fig. 2(e)), the results are consistent with the frequency domain
interpretation, although the identification scheme is formulated in the time
domain. The difference between the N = 256 and N = 512 curves in the noisy
case reflects the increased accuracy due to a smaller sampling interval A.

2.3.2 Band pass system Consider as a second example the band pass
system with the transfer function,

. 14.0625s2
s + 5.3255% + 189.845% + 466.17s + 7724.7°

Hy(s) = (25)

This system was excited with a colored gaussian random signal of bandwidth 15
[rad/sec] to obtain input-output data over a T = 2x [sec] time interval with
arbitrary initial conditions. The Bode plot and an example run of the input, the
output, and the noise corrupted output signals are shown in Figs. 3(a)—(d),
respectively. The RMS noise-to-signal ratio of the additive white gaussian noise
at the output is 20%.

The simulation results summarized in Fig. 3(e) used two groups of modulat-
ing functions comprised of frequencies defined by the following:

Group One: {0,1, 2, ..., M} for M =11, 12, ..., 17.
Group Two: (M, M+ 1, ..., 14} forM=0,1, ..., 9.

In each case the curves have been obtained by averaging the results over ten
runs. The error criterion is the same as in (24) relative to the parameter vector
6 = {5.325, 189.84, 466.17, 7724.7, 14.0625}. The results for Group One are
similar to those of the first example and can be explained analogously, i.e., the
estimation error goes through a minimum as M increases from the value M = 11
(below the bandwidth) to the value M = 17 (above the bandwidth). The results
for Group Two can be explained on the basis that as M decreases from the value
M = 9 the estimation error decreases because more information in the signals is
utilized by the least squares estimate. However, the curves for both N = 256
and N = 512 flatten out at the minimum because nothing is gained by including
modes below the pass-band of H,(jw). Hence, the combined results are
consistent with a frequency domain viewpoint in that the most significant
information in the data has a band-pass nature like the system transfer function.

2.3.3 Nonminimum phase system Consider as a third example the non-
minimum phase system with the marginally stable transfer function,
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Fig. 3. Least squares identification of H(s).

Hals) = 0.55° + 252 + 0s + 1
3 s+ 0%+ 2.552 4+ 0s + 0.5625 °

(26)

which has imaginary axis poles at (*50.5, *51.5) and zeros at (—4.118,
0.059+;0.695). The objective is to identify the parameters defined by: 8 = {0,
2.5, 0, 0.5625, 0.5, 2, 0, 1}. This system can be expected to be more difficult to
identify owing to the larger number of unknown parameters, i.e., 8 for (26)
verses 4 for (23) and 5 for (25).
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Table 1. Least squares identification of Hs(s)

Input DFT 1 & - ol
u(t) 0.7} | Order N 5 E, (6:-6)°)
[0, 2n] 1024 0.06
512 0.02
0.01£ ,
[0, 47] 256 0.33
128 1.65
512 0.07
256 0.07
[0, 2] > o
DC 128 .708
+ 64 0.26
Four 512 0.003
sinusoids
256 0.003
128 0.004
64 0.017

The simulation results summarized in Table 1 illustrate some of the trade-
offs between frequency content of the input signal, the length of the time
interval [0, T], and the order N of the DFT used in the parabolic approximation
(22) for the one-shot identification of (26) under noise-free data conditions®. In
the case of the single mode input signal, u(¢) = 0.01¢3, over a [0, 2x] time
interval, the identification accuracy is acceptable at {|A6]|=0.06, but at the
expense of a rather high order DFT (N = 1024). Doubling the time interval to
[0, 47], thus having the resolving frequency (to 0.5 [rad/sec]) results in better
accuracy for a lower order DFT (N = 512). The corresponding results show yet
better accuracy when the multi-modal input signal is used consisting of a DC
(constant) plus four sinusoids. In this case acceptable accuracy is attained for
lower order DFT’s, especially when the resolving frequency is 0.5 [rad/sec].
Notice that the guideline for T given by (19) yields: T=4na/W, = 8x, which is
conservative in light of the results obtained for this example.

3. Maximum likelihood estimate

If noise in the data cannot be effectively blocked by a judicious choice of
modulating function frequencies then the least squares estimate may incur a
significant bias, as is well known in regression analysis. In this case the equation
error for (14), which is represented by

t The number of modes M in the vector of modulating functions (4)-(5) was also varied from M = 7
to 11 in order to cover the system bandwidth (W =2 [rad/sec]). However, this affect on the
identification accuracy is secondary under the noise-free conditions and hence is omitted from
Table 1. Note the error criterion for A8 in Table 1 is slightly different than (24) for this example.
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e=Cre - CD"Y, 7(27)

will not be negligible. A maximum likelihood estimate will be developed in this
section” which is aimed at the asymptotic removal of the bias for the situation
depicted in Fig. 4. Here the measured input-output data is denoted by (x(?),
y(#)) respectively, while the noise-free input-output signals are designated by
(u(t), w(t)). The noise signals (v(f), n(t)) corrupting the pair (u«(#), w(¢)) are
assumed to be uncorrelated zero mean stationary gaussian random processes.
Under these circumstances the formulation of the preceding section, which led
to the algebraic equation (10) for data over a single [0, 7] interval, can be
rewritten as follows for data given on K nonoverlapping time intervals, [#;, £+1],
i=1,2,..., K, each of duration T (c.f. (10)):

¢'D"W, ]
€1 'D"-lwl

C1'U1
Cz’D”Wl
Czan—l Wl
: =0 (28)
c2'Uy

Cw' D"W,,
cm'D"IW,

' Uy

where ¢;’ is the ith row of the matrix C , and (U,, W,) are the Fourier coefficient

u(t) w(f)

H(s)

r
o(t)——=(3) n(t)

i
() - 70)]

Fig. 4. Signals for the maximum likelihood estimate.

t The algorithm of Levin (1964) for discrete systems identiﬁcatibh, ongmally due to Koopman
(1937) and analyzed in detail by Aoki and Yu (1970 a; b), will be modified to fit the formulation of
Sec. 2.
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vectors for the noise-free input-output signals (w(f), u(t)), 4=t=s+T.
Similarly, (X;, Y)) and (V;, N;) will denote the Fourier coefficient vectors for
(x(1), y(8)) and (v(#), n(t)) respectively. The matrix-vector equation (28) will
henceforth be denoted by

G,y'px = 0. (29)

With (U;, W,) in the column vector p, of (28) replaced by (X;, Y;) (or (V,, N})),
this new column vector will be denoted as g, (or r,). From Fig. 4, it is easy to
see that

x = gx—Pr- (30)

Since (v(¢), n(t)) are assumed to be zero-mean gaussian processes, the Fourier
coefficients vector 7, in (30) is a gaussian vector with a covariance matrix

R, = cov(ry)

which can be calculated as follows by assuming the auto- and cross-correlation
functions of the noise processes are known:

E[(c'DV)(N;'D’c)]
L+T

47
c’D-E{ f(t—ti)v(t)dtf n(s)f’(s—t,-)ds]-D’c

4 4

L+T p 44T
C'D{ f SU=t)R, (L, 5)f' (s—t,)dsdt}D'c. (31)
4 I8

where

R, .(ts) = E[v(t)n(s)).
As a special case, when (v(#), n(t)) are uncorrelated white gaussian processes
and ¢, ;- =T, the evaluation of (31) can be greatly simplified. By assuming

that R, is invertible, the conditional probability density function can be written
as follows;

2
p(ax| E.Gx"px = 0) = const|Ry| TexP(-%”q"—pK”ni-')

where £ is defined by
E = COI[—ln —@1y +-vy bn]- (32)

Then the maximum likelihood estimate of 8 can be obtained by

pin llgx—pxll g, (33)

subject to
Ge'px = 0.

Using a Lagrange multiplier vector A, the above constrained optimization
problem is equivalent to



35

Parameter identification of differential systems 257

Eﬂ;'l‘nl( llgx—px | Ri“ +A'Gx'pk).

Taking as a first consideration the partial derivatives with respect to p, and 4,
and equating them to zero, the result is

—2R N gx—p)+GA =0,  Gi'he= 0.
The preceding equations yield

A= Z(GK'RKGK)-XGK,qK
f;x = qA'-RKGA'(GK'RKGK)_IGK'QK (34)
by assuming that (G,'R,G) is invertible. Then, it follows that
Iqu-mﬂ,f;., = (gx—Px) R (qx—Px)
= (gx'Gr)(Gx'RxGx) ™ (Gk'qx)
= ” GK,qK ” (GZK-RKC‘)'“
where the second equality is due to (34). Thus the optimization problem (33) is

reduced to
min’gnizell Gx' x| & recor- (35)

Although (35) is a nonlinear optimization problem for which the global
optimum is in general difficult to find, an iterative algorithm will be suggested to
find the local optimum by observing the following fact: If the weighting matrix
(G,'R G,)! is temporarily substituted by a given constant matrix W, the
problem is equivalent to minimizing a quadratic cost. More specifically, to
minimize with respect to & the quadratic form,

1Gx'all,?, (36)
the vector G,'¢, can first be rewritten as follows (c.f. (28) and (13));

-CI'D"YI CI'D"_lyl e C)'Xl- [ -1
' DYy ¢'D™'Yy ... Xy |-a,

Gi'ax =
(cm' DYy ' D" Yy oo ' X | ba
“cp*Y, CD™'Y, ... CX,|[-1]
. . . -a,

ey, cpr'y, ... CX. )| b
[cp"y, CI, .
[

cory, T
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Then (36) is equivalent to

—CD."Yl cry CD"Y, €Iy .
I6x'a:ll,2 =1-1, 63 - = |'W[ . [—01 37)
LCD"Y,( Cr, cDY, CIy
- I— L@ @] -1
- [ 1; e ]—921 922} [e] . (38)

Hence, it is evident that
d ’
a_encx QK”wzlé =0
leads to
6= 0,719, (39)

since the symmetry of W in (37) implies £,, = £,;'. Note that for W = I, 6 in
(39) minimizes the squares of the equation error (27), and hence is exactly the
same solution as suggested in Sec. 2. Based on these observations, the
following iterative algorithm is suggested:

The iterative algorithm X

Initialization: Letting G,'R,G, = I, calculate 8¢ in (39).

Step 1: Calculate 6, in (39) by letting W = (Gy'RG) s,

Step 2: Check the convergence of the estimates. If it tends to converge and
some more improvement is desired, replace the value of 8¢ by that of €, and go
to Step 1; otherwise stop.

The initialization step minimizes the squared norm of the equation errors; in
Step 1, the weighted squared norms of the equation errors will be minimized;
and so forth.

Special case 1:  When (v(t),n(f)) are uncorrelated stationary white gaussian
processes and £+, —4>T, then

R, = diag[R R ... R],
where
R = covle;'D"N1,¢1'D*IN,, ..., ai'Vy,
veer €' D"N 1, ¢’ D™ INY, ..., ' Vi) (40)
By denoting

G,' = diag[G' G' ... G'],
and ) (41)
gx = col[q(1), ¢(2) ... ¢(K)]
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where

q(i) = colley,'D"Y;, ¢,'D™Y,, ..., 1'X,,
ver ' DY c,,,'D""_Y,—, . ¢ B

(35) can be reduced to

G'RCY"

mjn gluc'q(i) | 2 . (42)

The optimization algorithm is similar to the general case, but the dimension of
the weighting matrix (G'RG)™ is reduced by a factor K compared to
(G4'RxG)! in (35).

Special case 2:  In addition to the assumptions made in the Special Case 1,
assume that m = 1, i.e., only one algebraic equation will be extracted from each
non-overlapping time interval. Now R in (40) becomes
R = cov[c,'D"N;, ¢,'D™'N,, ..., e;'V1], - 43)
and G’ in (41) becomes &'. Furthermore, 7
(G'RGY' = (E'RE)' and G'q(i) = E'q(i) (44)

are scalars. Hence (42) can be reduced to an even simpler form as

& cranl 2 = 3 Egl)’
21"6 q(l)ll(:kc‘_, = -§1£ﬂé_1%_€t——§_

E'(2.q(i)q' ())E
- ERE
=525 | (45)

where
B=2q)q ).

As is well known in matrix theory, the minimum value and the optimal solution
for (45) are the smallest eigenvalue and its corresponding eigenvector with the
unit first element of the following generalized eigenvalue problem:

(B'—&R)g =0. | (46)

The same solution has been used by Koopman (1937), Levin {1964), Aoki and
Yue (1970 a; b) for the discrete system identification problem. In the statistics
literatures, Sprent (1966; 1969) also suggested this solution and called it a
“generalized least squares solution”.
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Recursive least squares
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Fig. 5. Recursive identification of H,(s) and H x(s).
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‘3.1. Simulation results for the recursive ML and LS estimates The
maximum likelihood estimate developed iri the previous section was applied to
the identification of the systems H,(s) and H ,(s) given by (23) and (25), forced
by the same colored gaussian random processes as previously described, i.e.,
bandwidths of 5 [rad/sec] and 15 [rad/sec] respectively. Both the input and
output signals for each system were corrupted as shown in Fig. 4 by zero mean
white gaussian noises, uncorrelated with each other. Recursive identification
was carried out for each system using the data collected over the successive
time intervals [¢;, t,+2x],i =10, 1, 2, ..., i.e., wy = 1 [rad/sec], and a 256
point DFT (N = 256) was used for the parabolic approximation (22) in
calculating the Fourier coefficient vectors of the data on each [0, 2x] time
interval.

The modulating function modes were selected as (0, 1, 2, 3, 4, 5) and (7, 9,
11, 13) respectively for the systems H,(s) and H,(s), and the resulting
algebraic equations, which numbered 8 and 4 respectively, were summed on
each interval in order to meet the scalar equation requirement of Special Case 2.
Hence, the optimization problem on each {0, 2a] interval is to find the
eigenvector corresponding to the smallest eigenvalue of the generalized eigen-
value problem (46). This was accomplished using a standard subroutine in the
IMSL (1982).

The results of the recursive identification for each system are shown in the
lower portions of Fig. 5 with the norm (24) plotted as a function of the number of
time intervals. Also shown are the results of the standard recursive least
squares algorithm applied to the same data (upper curves). The results clearly
show that the recursive LSE incurs a bias at every noise level which can be
effectively removed using the recursive MLE.

4. Conclusions

Depending on the nature and degree of completeness of a priori knowledge
available relative to the system and noise spectral characteristics, a judicious
choice of Fourier based modulating functions can be effective in ameliorating
noise effects for a deterministic least squares identification based on time
limited data. This has been verified via the simulation results for several
examples. In the case of recursive identification involving noise corrupted data
extracted from non-overlapping time intervals, the maximum likelihood estimate
of Levin (1964), Aoki and Yue (1970 a; b) has been adapted to the modulating
function formulation in order to remove the bias incurred by a standard least
squares algorithm. Future problems include model order determination pro-
cedures and optimal inputs for system identification within the context of the
modulating function technique.
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Appendix: A set of Fourier based modulating functions
Consider the set of commensurable sinusoids
{1, cosm wet, sinm,wot, ..., cosm,wel, sinm,wet}, (A.1)

where wo = 2x/T and (m,, m,, ..., m,) are selected positive integers
satisfying m, < m, < ... < m,,. Within the (2M + 1) dimensional function space
spanned by the functions in (A.1), there will exist a (2M +1—») dimensional
subspace of modulating functions satisfying (2) which can be delineated as
follows. In order to account for the different cases when the model order » is
even or odd, the “integer part” notation [n/2] is used: [n/2] stands for n/2
when n is even, or [(n—1)/2] when n is odd.

Cosine form: Foreachk =0,1, ..., M=[(n+1)/2], let
{(n+1)/2]
¢c,k(t) = Jgo a,,,,-cosm,,,,,-wot (A2)

define a modulating function of order n with the a, ; coefficients chosen such that
4’:,:»“)(0) = ¢c‘*‘°(T) =0, i=0,24,..., 2[(n-1)/2] (A.3)

and
{(n+1)/2]
fud a,,,jz = 1, Qi 0 > 0. (A.4)
Sine form: Foreachk =1, 2, ..., M—[n/2], let
{n/2}
@, (= ,'go by ; sinmy , ;wot (A.5)

define a modulating function of order n with the b, ; coefficients chosen such that
9,000 =¢ O(T)=0, i=135, .., 2[x»2]-1 (A.6)

and
[n/2]
j;ob,,f =1, byo>0. (A.7)

With respect to the end point conditions (2), notice that the vanishing of the
odd and even derivatives was not included in (A.3) and (A.6) respectively, since
these conditions are automatically satisfied by the forms assumed in (A.2) and
(A.5). The existence and uniqueness of the above a, ; and b, ; coefficients can be



" where

43
Parameter identification of differential systems 265

established by the following Lemma which also yields explicit expressions for
their determination. -

Lemma. The coefficients a,; and b, ; specified in (A.2)-(A.7) are uniquely
determined by Vandermonde type matrices.

Proof for b,;. Fora fixed k in 1<k<M- (n/2}, condition (A.6) is equivalent
to

My Mps1 .es Misin/2) b, 0 0
3
my mydy e M i iw2) by || O
K : . 4 M
w21 (21 2An/21-1 ) -
m 22 o AP om0 ez 0
or
Mes 1 My 2 s My (n/2] be1 MMy
3
med) mls oo M4 (w/2) ba, 2 = ~b o m>
2[ns2 w211 /21 ) w2)-1
mk+£ H My 5"/2}_ mk+%£x'l|2]]_ b tw2) mkzwz}-
The above equation will be denoted as
Mkbk = —b,,,om,,.

By letting 4,,; = mp. 2, j = 1, 2, .'.., {n/2}, M, can be expressed as

1 1 Ve 1 Met 1 0 e 0
Mk = A‘k.*-l Ak.+2 o )‘k+.('l/2] (') ml:+2 LR 9 . (A.S)
PRI T U WL - o I I R | IR

The first matrix on the right hand side of (A.8) is the well-known Vandermonde
matrix; its determinant and inverse matrix can be expressed in explicit forms
(Graybill, 1983). Hence, M,™! can be explicitly expressed as

- -

1 0
Mps1
- 0
Mer2 [(i,j)-element
g 1 . T e )
M gj(mkﬂ'z"mhjz) . ; Pi(me.?)

0 o _r

L M+ (/2]
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{n/2] [n/2] )
Pix) =, Il (-m.? = El G fori=1,2, ..., [n/2]. (A.9)

=1 #i
So, b, can be expressed as
b = —by oMy m,, : (A.10)
and the condition (A.7) implies that
b 21+ my M, "M, 'm,) = 1, and b, ,>0. (A.11)
It is clear that the value of &, ¢ is uniquely specified as
bio = (1+m,,’M,.'TM,,"m,,)'%. (A.12)
Hence {b,,) can be uniquely found by combining (A.9), (A.10), and (A.12). The
derivation and proof for g, ; is similar and hence is omitted.

It is convenient for identification purposes to collect the 2M +1 —»n modulat-
ing functions into a single column vector, )

(¢, o(D)

d(t) = ¢c.;w~[(n+1)+/2](l) (A.13)

51
.

| D u—(nr2)(8)

It is easy to see that these (2M+1-n) modulating functions are linearly
independent, since in the construction procedure (A.2) to (A.7) a new sinusoid
is added as k is increased. Hence ¢(t) consists of a set of basis functions for the
(2M + 1 —n) dimensional modulating function space which is a subspace of the
(2M + 1) dimensional trigonometric function space spanned by the functions in
(A.1). Let f(¢) denote the column vector of 2M +1 sinusoids:

f(t) = colll, cosmywel, sinmywet, ..., cosmwet, sinm,wot],
0<t=<T.

Then &(¢) in (A.13) can be represented as
&(t) = CA(D), (A.14)

where C is an (2M+1-n)x(2M+1) matrix determined by the {a,,, by,} in
(A.2)-(A.7).
The above results are summarized in the following Theorem.

Theorem. In the (2M+1)-dimensional vector space spanned by the set in
(A.1), there exits a (2M+ 1 -n)-dimensional subspace of modulating functions
of order »n represented by the vector function @(f) in (A.14). The matrix C in
(A.14) has rank (2M+1—n).
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Abstract

Several variants are presented of a linear-in-parameters least squares formulation for determin-
ing the transfer function of a stable linear system at specified frequencies given a finite set of
Fourier series coefficients calculated from transient nonstationary input-output data. The basis
of the technique is Shinbrot’s classical method of moment functionals using complex Fourier
based modulating functions to convert a differential equation model on a finite time interval
into an algebraic equation which depends linearly on frequency-related parameters.
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1. INTRODUCTION

Methods for determining the transfer function of a stable linear system from input-output
data include correlation and spectral analyses, as well as the direct sinusoidal measurements.
Each of these ‘‘nonparametric’’ identification techniques require either a statistical stationarity
assumption on the data, or a periodic steady state condition to be established, before initiating
calculations of the transfer function at pertinent frequencies. Excellent summaries of these
methods, as well as the analysis of noise effects and finite data lengths, can be found in
Astrom [1], Ljung [2], Soderstrom and Stoica [3], and Unbehauen and Rao [4]. Notwith-
standing noise considerations, long data lengths may be required in order to achieve good
accuracy due to the stationarity or steady state assumption. By contrast, a method is proposed
here that utilizes the frequency content in short data lengths in order to set up a least squares
estimation of the transfer function at selected frequencies. Since short data lengths are used
there is no assumption of steady state operation or stationarity of the data, though there must
be present sufficient energy content in the data at the specified frequencies in order to avoid
degeneracy in the least square estimate. The basis of the technique is the classical Shinbrot
[5] method of moment functionals, also known as the modulating function technique, using
complex Fourier based modulating functions. A forerunner of this approach can be found in
Pearson and Lee [6] which utilized real valued Fourier based modulating functions, i.e., com-
mensurable sinusoids, for the parameter estimation of linear differential systems. Therein also
can be found a discussion of the background of this method with a listing of references.
However, this paper appears to represent the first use of modulating functions in the context
of the ‘‘nonparametric’’ system identification problem. Several variants of a deterministic

least squares estimation of frequency-related parameters that underlie the transfer function will
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be developed below.

2. Least Squares Formulations

Consider a stable linear system with input #(z) and output y(¢) modeled on a finite time

interval by the differential operator equation:

A@)y@)=B@u()e(r) (1)
where (A (p),B (p)) are polynomials in the differential operator p=d/dt of degree less than or

equal to an a priori integer n, and e (¢) represents the effect of modeling errors. The problem
considered here is to estimate the transfer function G (j w)=B (j w)/A (j ) at a finite set of fre-
quencies {kwy, k=1,2 - - M}, where g is a user selected “‘resolving” frequency and M a
chosgn”irpﬁteiggrr, given the input-output data [u(z),y(t)] over a finite set of time intervals
{[t;.4;4T ), i=1, - - N).! These time in:t:ervalrs,a{c each chosen of length T =21/, and ﬁeed
not necessarily be disjoint. However, a certain degree of independence in the data collected
over the different [0,T o] time intervals is necessary in order to avoid degeneracies in the least
squares estimate to be discussed below. Understandably these degeneracies are more likely to
be avoided in normal operating records if the intervals are disjoint. In addition to the upper
bound on the system order n, the DC value of the transfer function is assumed given or can
be measured from the step response, i.e., G (0)=B (0)/A (0) is presumed known a priori. If

this is not the case, then the estimated transfer function can be scaled by the parameter G (0).

The Shinbrot method of moment functionals is a technique for converting a differential

equation on a finite time interval into an algebraic equation by the use of ‘‘modulating func-

1If the system bandwidth wg is known, then choosing (M () such that M wy=tp will cover
the bandwidth at the knots k g, k=1,2 - - M.
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tions’’. As introduced by Shinbrot [5], ¢(¢) is a modulating function of order n relative to a

finite time interval 0<¢ <T, if it is sufficiently smooth and satisfies the end point conditions:

0OO=pDT)=0, i=0,1 - n-1 2
where ¢¢)(2)=p’¢(t). Clearly, modulating functions can be constructed in many different

ways.2 Here a specific set of complex valued Fourier based modulating functions is defined in
a way that is conducive to solving the problem at hand, viz,, let

b, (£)=e"™ ™ (1-¢’ ™), 0<r<T g=2m/e, (3a)

m=0,1--M

define a set of modulating functions of order n with respect to the time interval [0,T o).

Equivalently by the binomial expansion, each such function is representable by

n .
Om ()=L bye” " (3b)
k=0
where b, is defined in relation to the binomial coefficient by
b = (-D)F [,’;) @

The first representation (3a) makes evident the fact that each ¢, () is indeed a modulat-

ing function of order n, i.e., (2) is satisfied,> while the second representation (3b) implies that
calculating linear functionals defined by each ¢, (r) on a set of functions specified over {0,T ]
will entail calculating the Fourier series coefficients of these functions at the frequencies k @,
k=mm+1--m+n, m=0,1 - - M. In turn, these coefficients can be calculated efficiently by

DFT/FFT methods which provides an important motivating factor for this analysis. This will

2 See discussion in Pearson and Lee [6].

3 Notice that any modulating function of a fixed order is automatically a modulating function of
any lower order relative to the same time interval. This property facilitates the formulation for any
system of order less than or equal to the upper bound .
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be discussed further below. The important property of the functions defined in (3) is con-
tained in the following 4
Modulation Property. Let P(p) be a differential operator of order at most #, i.e., a
polynomial in p=d/dt of degree <n, and z(r) any sufficiently smooth function defined
on [0,T,]. Then the modulation of P (p)z (¢) with ¢,, (¢) over [0,T o] satisfies

To m+n
[0, @)z()dt = 3 by P (<K OOZ (5)
0 k=m

where Z, is the k** harmonic Fourier series coefficient of z (1), i.e.,

T,
Z, = £ z(t)e K dr, (6)

Note that owing to the end point constraints (2) satisfied by each ¢, (¢) function, none of the
boundary point derivatives 26)0) or 2T o) appear in (5). This is crucial to the ensuing
analysis and, in fact, represents a primary reason for employing the modulating function tech-

nique.

2.1. Formulation 1

A direct application of the above property to the problem posed involves rewriting the

differential operator model (1) in the equation error form followed by the modulation with

b, (¢); thus,?

4 Proof of this property is given in the Appendix in order to proceed directly with the develop-
ment.

5 The process of going from the model (1) to equation (7) can be viewed as a projection from a
space of functions on [0,T ] down into a finite dimensional space spanned by the modulating func-

tions.
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To TO

z{tbm(r) [A(p)y(t)—B(p)u (t)]d::jq)m(:)e(z)dr. ~ )
0

In view of (5) the preceding equation is equivalent to

m+n ) ) m+n
2bim [A (=jkg)Y _ —B (=jk 0p)U ] = 2 bi-mE - (8)
k=m k=m

Define the real and imaginary parts of the polynomials (A (jk wg).B (jk 1)) as follows:

A (kwg)=0y+jBy, B (ko)=Y +jd; ©
and collect these together to form the 4x1 “‘parameter’’ vector:

O
8, = 5”: . (10)

&
Also, define as follows the 2x4 data matrix Y, (i) in terms of the real and imaginary parts of

the k™ harmonic Fourier series coefficients of the input-output data corresponding to the time

interval [t; £;+T ], i=1,2 - ‘N:

YEG) YiG) -UEG) -USG)

)= _ (11)
VeE=1 vy vea) UsG) -URG)
The notation for the entries in (11) is explained by
To To
YEG) = [y (+t)coskagt de,  YEG) = [y (r+)sinkaor dt (12)
0 0

and similarly for (U{(i),U{(i)). Then the real and imaginary parts of the equation error (8)
can be collected into the following real valued 2x1 vector equation which serves as the start-
ing point for a least squares estimation:

m+n

Z bk—ka ( )ek =&, (l) (13)
k=m

m=0,1--M, i=12--N.
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The equation error vector in (13) is related to the Fourier coefficients of the original equation

error by

m+n E£G)
£,@)>=Y0b |
m( ) k§m k—m [E}:(l)
Values of the transfer function G (jk wg)=B (jk wg)/A (jk wy) are seen from (9) and (10) to

be related to the parameter vector 6, by the real and imaginary part relations:

. 0t Y =P i . o O, =B Ve
ReG (jkwg)y=————, ImG (kwg}=——"F—=— (14)
o +Bi o+
or equivalently by the magnitude-phase relations:
2 +5 2 S
IG ik o) = y"z L Gkay) = tanl— - —r (15)
g+ Y oy

Starting from a presumed knowledge of the DC value G(0), which implies that
80=[A (0),0,B (0),0]’ is known, equation (13) can be rewritten in the standard regression equa-
tion format to estimate the parameters 6,, k=1,2 - - M+n given the data over a sufficient
number of [z;,;;+T ], intervals, i=1,2 - - N. A consideration of this equation reveals the fol-
lowing:
1) The frequency range covered by the parameters in (13) is (M +n)w,. Hence, if it
is desired that the transfer function estimate cover a frequency range about 25%
greater than the system bandwidth wp at a resolution @y, a choice in (M ,w) such that
(M+n)wy = 1.250p (16)
reflects this objective.
2) Counting unknowns in (10) and (13), the total number is 4M+n). Since each
equation in (13) is of dimension 2, counting equations suggests that the total number

N of [1;,;;+T ] intervals should satisfy: 2M+1N24(M +n), ie., N22(M +n)/(M +1).
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However, the equations in (13) are partially decoupled with respect to the index m.
Therefore, it seems best to estimate (6, - - 6,) at the first stage, which corresponds to
m=0. This means that there are 4n unknowns for the first stage requiring that N
satisfy N22n. Thereafter, the number of unknowns is just 4 for each stage
corresponding to m=1,2 - - M, which implies N22 assuming that the preceding esti-
mates are used in each succeeding stage. This kind of ‘‘bootstrapping’ of the least
squares estimation facilitates keeping the number of unknowns to a modest level at
each stage.
3) The two row vectors comprising W, (i) in (11) are seen to be mutually orthogonal
for each k and i suggesting a maximal degree of independence for these equations in
utilizing the information content in the data. This is a direct result of the Fourier
nature of the underlying formulation.
Discussion: The above development shows that it is possible to formulate a linear-in-the
parameters least squares estimation problem for parameters (10) that underlie (via (14) or
(15)) the transfer function G (jkw,) at each k* harmonic frequency. The input-output data
can be time-limited and transient, but must have sufficient energy content at the specified fre-
quencies to avoid degeneracies in the least squares solution. Apart from being highly non-
linear, the relations (14) and (15) involve the difference between parameter related quantities,
e.g., 0 Y;—By O;., whose values may be large for large k. This aspect of the formulation por-
tends a potential source of error magnification which is alleviated by the formulation of the

next section.
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2.2. Formulation 2
Given that [u(z),y(2)] satisfies the model (1) on a [0,T] time interval, it follows that

[u(t),y (¢)] also satisfies the model

AEPA@YO=A(P)B@u(HA(-ple(t). amn

Choosing a set of modulating functions of order 2n to accommodate the upper bound on the
highest degree differential operator in (17) and modulating this equation with the m™ member

of this set, the following projected equation error results which is analogous to (8):

m+2n__ m+2n__
2 bim [A Uk 0g)A (—jk @)Y _ —A (jk wo)B (—jk w)U ]= Y bemAGkw)E_;  (18)
k=m k=m

where b, is defined by, cf. (4):

5= o (i)
Noting that A (jk wg)A (—jk ) is real while A (jk wg)B (—jk wy) is complex, define real quanti-
ties (@;,04,B;) by the relations:

a;=A (jk wp)A (—jk @), Oy +jBi=A Uk 09)B (=jk o) (19)
and collect these into the 3x1 parameter vector 8, defined by

_ O
0, = |og | (20)
By

Also, define the 2x3 data matrix y, (i) by

YE@) -UgG) URG)

v, ()= 21
Ve vy —ugay -ugo) | D

where the notation for the entries in (21) is the same as defined in (12). Then the real and
imaginary parts of the projected equation error (18) can be represented by the following real

2x1 vector equation:
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m+2n__ _ -
Y bi-m V()8 =, () (22)

k=m
m=0,1--M, i=1,2:-N.

Equation (22) can be rewritten into the standard regression equation format for setting up
the least squares estimate of the parameters (51, + - Bpy42,) based on the data over [z;,5;+T ],
i=1,2 - - N. Again, presumed knowledge of the DC value implies that §0=A (0)[A (0),B (0),0)
is known or, if not, the resulting transfer function estimate can be scaled by the parameter
G (0). Here the estimates of the transfer function are related to the parameters by the real and

imaginary part equations (as found from (19) and (20)):

. O . P
ReG (jk wg)=—, ImG (jk 0g)=—— (23)
a; ai
or equivalently by the magnitude-phase relations:
2,12
. o +Bi . -1 Pe
G kg = ——=—, G (kg =—tan™'—. 24)
ag O

Consideration of the least squares formulation in this case leads to the following:
1) The frequency range covered by the parameters in (22) is (M +2n)wy; hence, the
guideline (analogous to (16)) for choosing the pair (M ,wy) in this case is
(M+2n)wg = 1.250p . (25)
2) Counting unknowns in (20) and (22), the total number is 3(M+2n) which would
imply that the total number N of [f,;+T] time intervals should satisfy:
2N (M+1)>3(M +2n). However, the partially decoupled nature of the equation (22)
with respect to the m index suggests bootstrapping the solution from the first stage.
Thus, for the initial stage (m=0), N needs to satisfy N>3n. In the succeeding stages,

N needs to satisfy N>2 (since there are 3 unknowns and 2N equations at each such
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stage); this assumes that the preceding estimates are used at each succeeding stage
(m=12--M).
Discussion: Comparing (23) and (24) with (14) and (15) reveals that the second formulation
avoids the potential error magnification problem of differencing large estimated quantities in
calculating the transfer function at high frequencies. However, the second formulation
requires estimating 6n unknowns at the first stage, i.e., the m=0 stage, verses 4n unknowns

for the first stage of the first formulation.

2.3. Formulation 2-Dual

The dual to the formulation of the preceding section is to observe that a given pair

[u(2).y (t)] satisfying the model (1) on a [0,T(] time interval also implies that it satisfies (cf.
(17

B(-p)A@)y(®)=B(-p)B@)u(@)+B (-ple(1). (26)

Again choosing a set of modulating functions of order 2n, a development similar to that of

the previous section leads to the real 2x1 vector equation

m+2n__ - -
Y b m Wi ()0, =&, () 27

k=m
m=01--M, i=12-'N
where the data matrix , (i) is defined by

UEG) -YEG) YEG)

. 28
Ve® = lugey —rpo) 7660 >

and the real 3x1 parameter vector 8, is defined by
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by .
ék = Otk (29)
—Be
with the entries in (29) defined by
b=B (jk0)B (—jk @), 0y +j Py = Ak wp)B (—jk ). (30)

Relations between the transfer function and the parameters in this case are found to be

ReG Gkag=—tPe ImG (ke = Pebe 31)
0)= , 0)=
o2+B7 o2+B7
for the real and imaginary parts, or for the magnitude-phase:
bk2 1 Bk
G kol = ——, G (jkayg) = —tan™'—. (32)
o +BE Ok

Comparing (21) and (28) verifies the duality of the two formulations by virtue of the
interchange of input and output. Note that each formulation has the same total number of
unknowns - in general. However, the dual formulation has the potential advantage of reduc-
ing the total number of unknowns in the event of a priori information on a lower degree
numerator polynomial than denominator polynomial in the transfer function. For example, an
‘“all pole’’ model means that b,=(B (0))? is known for all k, i.e., a total of 2(M +n) unknowns
verses 3(M+2n) for the previous case. The formulation leading to (27) can easily be

modified to reflect this consideration.

3. Conclusions

Three formulations of a linear-in-the parameters least squares estimation have been
presented for determining the transfer function of a linear system at specified frequencies
given transient nonstationary input-output data. While some comparisons have been noted in

the discussions following each formulation, a clear indication of the pitfalls and advantages of
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each will have to await a thorough simulation study including the effects of noise. Such a

study is currently underway.
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5. Appendix

To verify the modulation property (5) it is sufficient to consider the differential operator
P(p)=p’ for a fixed i<n. The result for a general n** degree polynomial P (p) then follows
" by superposition. Thus, for sufficiently smooth z(¢) on [0,T¢] and ¢,,(¢) defined in (3), the
left side of (5) in this case is

T, T,

gcpm @piz@)dr = (1Y {z(r)p"%. (t)dr (33)
where integration-by-parts has been used i times taking into account the boundary conditions
(2) possessed by each ¢, (r) function. Substituting the representation (3b) into the right side
of 7:(733), carryihg out the mdlcated dlfferentlatlon and changing the index of summation

verifies (5) for P (p)=p® as purported.



